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Abstract We investigated the regulatory mechanism of interleukin-6 (IL-6) synthesis induced by interleukin-1
(IL-1) in osteoblast-like MC3T3-E1 cells. IL-1 stimulated the secretion of IL-6 in a dose-dependent manner in the range
between 0.1 and 100 ng/ml. Staurosporine and calphostin C, inhibitors of protein kinase C (PKC), significantly enhanced
the IL-1-induced secretion of IL-6. The stimulative effect of IL-1 was markedly amplified in PKC down-regulated
MC3T3-E1 cells. IL-1 produced diacylglycerol in MC3T3-E1 cells. IL-1 had little effect on the formation of inositol
phosphates and choline. On the contrary, IL-1 significantly stimulated the formation of phosphocholine dose-
dependently. D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed the IL-1-induced
diacylglycerol production. The IL-1-induced IL-6 secretion was significantly enhanced by D-609. These results indicate
that IL-1 activates PKC via phosphatidylcholine-specific phospholipase C in osteoblast-like cells, and the PKC activation
then limits IL-6 synthesis induced by IL-1 itself. J. Cell. Biochem. 67:103–111, 1997. r 1997 Wiley-Liss, Inc.
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Interleukin-1 (IL-1) is a multifunctional cyto-
kine responsible for inflammation, infection,
and cancer, and IL-1 induces numerous physi-
ological effects on a wide variety of cells [Wilder,
1995; Dinarello, 1996]. In bone, it is well known
that IL-1 is a potent bone resorptive agent
[Nijweide et al., 1986; Ishimi et al., 1990]. Bone
metabolism is maintained by two types of func-
tional bone cells, osteoblasts and osteoclasts,
which are responsible for bone formation and
bone resorption, respectively [Nijweide et al.,
1986]. Accumulating evidence indicates that
osteoblasts, rather than osteoclasts, posses re-
ceptors for many bone resorptive agents [Nij-
weide et al., 1986]. Osteoclast activity has been
reported to be coupled through cytokine (such
as IL-1 and tumor necrosis factor-a) stimula-
tion of osteoblasts and the subsequent produc-

tion of secondary peptide, which activates osteo-
clasts [Thomson et al., 1986, 1987]. As for
intracellular signaling of IL-1, IL-1 has been
shown to catalyze phosphatidylcholine hydroly-
sis via activation of phosphatidylcholine-spe-
cific phospholipase C [Galella et al., 1992;
Schutze et al., 1994; Lozano et al., 1994], result-
ing in the production of phosphocholine and
diacylglycerol, which is generally recognized to
be a physiological activator of protein kinase C
(PKC) [Nishizuka, 1986]. However, the precise
intracellular signaling system of IL-1 in osteo-
blasts and its role in bone metabolism have not
yet been fully clarified.

It is well known that interleukin-6 (IL-6) is a
pleiotropic multifunctional cytokine that regu-
lates diverse cell functions such as promotion of
B cell differentiation and T cell activation, and
induction of acute phase proteins [Akira et al.,
1990a; van Snick, 1990]. It is recognized that
IL-6 is produced and secreted in a variety of
cells. As for bone metabolism, it has been re-
ported that IL-6 stimulates bone resorption and
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induces osteoclast formation [Ishimi et al., 1990;
Roodman, 1992]. Bone resorptive agents such
as IL-1, parathyroid hormone, tumor necrosis
factor-a, and platelet-derived growth factor have
been reported to stimulate IL-6 production and
its secretion in cultured osteoblasts [Helle et
al., 1988; Feyen et al., 1989; Ishimi et al., 1990;
Franchimont and Canalis, 1995]. Thus, accumu-
lating evidence suggests that IL-6 secreted from
osteoblasts plays an important role in bone
resorption as a downstream effector of a variety
of bone resorptive agents.

In the present study, we investigated the
regulatory mechanism of IL-6 synthesis in-
duced by IL-1 in osteoblast-like MC3T3-E1 cells.
We here show that IL-1-induced PKC activa-
tion via phosphatidylcholine-specific phospholi-
pase C limits IL-6 synthesis induced by IL-1
itself in osteoblast-like cells.

METHODS
Materials

myo-[3H]Inositol (90 Ci/mmol), [methyl-
3H]choline chloride (85 Ci/mmol), and mouse
IL-6 enzyme immunoassay (EIA) kit were pur-
chased from Amersham Japan (Tokyo, Japan).
IL-1 and potassium tricyclo(5,2,1,0)-decyl-[9(8)-
xanthogenate] (D-609) were obtained from Fu-
nakoshi Pharmaceutical Co. (Tokyo, Japan).
Staurosporine, calphostin C, 12-O-tetradec-
anoylphorbol-13-acetate (TPA), and NaF were
purchased from Sigma Chemical Co. (St. Louis,
MO). dl-Propranolol hydrochloride (proprano-
lol) was purchased from Wako Pure Chemical
Co. (Osaka, Japan). Other materials and chemi-
cals were obtained from commercial sources.
Staurosporine, calphostin C, TPA, and pro-
pranolol were dissolved in dimethylsulfoxide
(DMSO). The maximum concentration of DMSO
was 0.1%, which did not affect the assay for
IL-6 nor the measurement of diacylglycerol for-
mation.

Cell Culture

Cloned osteoblast-like MC3T3-E1 cells de-
rived from newborn mouse calvaria [Kodama et
al., 1981; Sudo et al., 1983] were generously
provided by Dr. M. Kumegawa (Meikai Univer-
sity, Sakado, Japan) and maintained in a-mini-
mum essential medium (a-MEM) containing
10% fetal calf serum (FCS) at 37°C in a humidi-
fied atmosphere of 5% CO2/95% air. The cells
(5 3 104) were seeded into 35-mm diameter

dishes in 2 ml of a-MEM containing 10% FCS.
After 5 days, the medium was exchanged for 2
ml of a-MEM containing 0.3% FCS. The cells
were used for experiments after 48 h. In the
experiments for the measurement of inositol
phosphates, the medium was exchanged for 2
ml of inositol-free a-MEM containing 0.3% FCS.

Assay for IL-6

The cultured cells were stimulated by IL-1 in
1 ml of a-MEM containing 0.3% FCS for the
indicated periods. The conditioned medium was
collected, and IL-6 in the medium was mea-
sured by an IL-6 EIA kit. When indicated, the
cells were pretreated with staurosporine, cal-
phostin C, or D-609 for 20 min.

Measurement of the Formation
of Inositol Phosphates

To determine phosphoinositide-hydrolyzing
phospholipase C activity, the cultured cells were
labeled with myo-[3H]inositol (3 µCi/dish) for
48 h. The labeled cells were preincubated with
10 mM LiCl for 10 min in 1 ml of an assay buffer
[5 mM 4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid, pH 7.4, 150 mM NaCl, 5 mM KCl,
5.5 mM glucose, 0.8 mM MgSO4, and 1 mM
CaCl2] containing 0.01% bovine serum albumin
(BSA). The cells were then stimulated by IL-1
or NaF at 37°C. The reaction was terminated
by adding 1 ml of 30% trichloroacetic acid. The
acid supernatant was treated with diethyl ether
to remove the acid and neutralized with 0.1 M
NaOH. The supernatant was applied to a 1-ml
Dowex AG1-X8 column (100–200 mesh, for-
mate form) as described by Berridge et al. [Ber-
ridge et al., 1983, 1984] with a minor modifica-
tion [Suzuki et al., 1994]. The radioactive
inositol phosphates were eluted from the col-
umn with 8 ml of 0.1 M formic acid containing 1
M ammonium formate.

Measurement of the Formation of Water-Soluble
Choline Metabolites

To determine phosphatidylcholine-hydrolyz-
ing phospholipase C and phospholipase D activi-
ties, the cultured cells were labeled with
[methyl-3H]choline chloride (2 µCi/dish) for 24
h. The labeled cells were stimulated by IL-1 in
the assay buffer containing 0.01% BSA for the
indicated periods. The reaction was terminated
by adding 0.75 ml of ice-cold methanol. The
dishes were placed on ice for 10 min. The con-
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tents were transferred to tubes to which chloro-
form was added and placed on ice for a further
60 min. Chloroform and water were then added
for a final chloroform-methanol-water ratio of
1:1:0.9. The tubes were centrifuged at 14,000g
for 5 min and the upper aqueous methanolic
phase was taken for analysis of the water-
soluble choline-containing metabolites. The
methanolic phase was separated on a 1 ml
Dowex 50-WH1 column (200–400 mesh) as de-
scribed by Cook and Wakelam [Cook and
Wakelam, 1989] with a minor modification
[Kozawa et al., 1994]. In brief, the phase was
diluted to 5 ml with water and applied to the
column. Glycerophosphocholine was removed
by 4 ml of water. Phosphocholine was then
eluted with 10 ml of water, and choline was
eluted with 10 ml of 1 M HCl.

Measurement of Diacylglycerol Formation

The cultured cells were incubated in the as-
say buffer containing 0.01% BSA at 37°C for 20
min, and then stimulated by IL-1 for 20 min.
The reaction was terminated by adding 0.75 ml
of ice-cold methanol, and the lipids were ex-
tracted by the previously described method
[Bligh and Dyer, 1959; Suzuki et al., 1996].
Diacylglycerol was quantitated using sn-1,2-
diacylglycerol assay reagents system (Amer-
sham) essentially according to the procedure of
Preiss et al. [Preiss et al., 1986]. The radioac-
tive spot corresponding to phosphatidic acid
was analyzed by BAS2000 (Fuji, Japan)
equipped with imaging plates [Amemiya and
Miyahara, 1988]. When indicated, the cells were
pretreated with D-609 or propranolol for 20
min.

Determination

The radioactivity of 3H-labeled samples was
determined with a Beckman LS-6500IC liquid
scintillation spectrometer (Beckman, Palo Alto,
CA).

Statistical Analysis

The data were analyzed by Student’s t-test
and a P , 0.05 was considered significant. All
data are presented as the mean 6 SE of tripli-
cate independent cell preparations. Each experi-
ment was repeated three times with similar
results.

RESULTS
Effect of IL-1 on IL-6 Secretion in MC3T3-E1 Cells

IL-1 (30 ng/ml) significantly induced the se-
cretion of IL-6 in a time-dependent manner up
to 48 h in MC3T3-E1 cells (Fig. 1). The stimula-
tive effect of IL-1 was dose-dependent in the
range between 0.1 and 100 ng/ml (Fig. 2). The
maximum effect of IL-1 on the secretion of IL-6
was observed at 100 ng/ml.

Effect of Staurosporine or Calphostin
C on Secretion of IL-6 Induced by IL-1

in MC3T3-E1 Cells

Staurosporine (10 nM), an inhibitor of pro-
tein kinases [Tamaoki et al., 1986], which by
itself did not affect IL-6 secretion, enhanced the
IL-1-induced IL-6 secretion in MC3T3-E1 cells
(Fig. 3A). We also examined the effect of calphos-
tin C, a highly potent and specific inhibitor of
PKC [Kobayashi et al., 1989], on the IL-1-
induced IL-6 secretion in MC3T3-E1 cells. Cal-
phostin C, which alone had little effect on IL-6
secretion, significantly enhanced the IL-1-in-
duced IL-6 secretion (Fig. 3B). The stimulative
effect of calphostin C on the IL-1-induced IL-6
secretion was dose-dependent in the range be-
tween 0.03 and 0.3 µM.

Effect of Down-Regulation of PKC on Secretion
of IL-6 Induced by IL-1 in MC3T3-E1 Cells

It has been shown that 24-h pretreatment of
TPA(0.1 µM) down-regulates PKC in osteoblast-
like MC3T3-E1 cells [Sakai et al., 1992]. We
also found that the binding capacity of phorbol-
12,13-dibutylate, a PKC-activating phorbol es-
ter [Nishizuka, 1986], in MC3T3-E1 cells with
24-h pretreatment of 0.1 µM TPA is reduced to
approximately 30% of the capacity in intact
cells (data not shown). We next examined the
effect of TPA (0.1 µM) long-term pretreatment
on the IL-1-induced IL-6 secretion in these cells.
The effect of IL-1 on IL-6 secretion was signifi-
cantly enhanced in the PKC down-regulated
MC3T3-E1 cells compared to that in the cells
without TPA-pretreatment (Table I).

Effect of IL-1 on Formation of Inositol
Phosphates in MC3T3-E1 Cells

To clarify the effect of IL-1 on phosphatidylino-
sitol-specific phospholipase C, we examined
whether IL-1 affects the formation of inositol
phosphates in MC3T3-E1 cells. However, IL-1
had no effect on the formation of inositol phos-
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phates (control, 2,045 6 99 cpm; 30 ng/ml IL-1,
2,111 6 106 cpm; each value represents the
mean 6 SD of triplicate determinations, as mea-
sured after 30 min stimulation). On the con-
trary, NaF, known to be an activator of heterotri-
meric GTP-binding proteins [Gilman, 1987],
significantly stimulated the formation of inosi-
tol phosphates in these cells (control, 2,122 6
101 cpm; 40 mM NaF, 30,300 6 887 cpm, each
value represents the mean 6 SE of triplicate
independent cell preparations, as measured af-
ter 30 min stimulation).

Effect of IL-1 on Formation of Water-Soluble
Choline Metabolites in MC3T3-E1 Cells

IL-1 significantly stimulated the formation of
phosphocholine in MC3T3-E1 cells (Fig. 4).
However, IL-1 did not affect the formation of
choline (control, 4,055 6 158 cpm; 100 ng/ml
IL-1, 4,182 6 191 cpm, each value represents
the mean 6 SE of triplicate independent cell

preparations, as measured after 30 min stimu-
lation). The stimulative effect of IL-1 on the
formation of phosphocholine was dose-depen-
dent in the range between 1 and 100 ng/ml (Fig.
4). The maximum effect of IL-1 on the phospho-
choline formation was observed at 100 ng/ml.

Effect of IL-1 on Production of Diacylglycerol
in MC3T3-E1 Cells

IL-1 stimulated the production of diacylglyc-
erol in MC3T3-E1 cells (Table II). The stimula-
tive effect of IL-1 on diacylglycerol production
was dose-dependent in the range between 1 and
100 ng/ml, and the maximum effect of IL-1 was
observed at 100 ng/ml (data not shown). D-609,
which is known to be a specific inhibitor of
phosphatidylcholine-specific phospholipase C
[Schutze et al., 1992], significantly inhibited
the production of diacylglycerol induced by IL-1
(Table II). On the contrary, propranolol, an in-
hibitor of phosphatidic acid phosphohydrolase,

Fig. 1. Effect of IL-1 on IL-6 secretion in MC3T3-E1 cells. The cultured cells were stimulated by 30 ng/ml IL-1 for the
indicated periods. Each value represents the mean 6 SE of triplicate independent cell preparations. Similar results
were obtained with two additional and different cell preparations. *P , 0.05, compared to the value of control.
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which catalyzes phosphatidic acid into diacyl-
glycerol [Pappu and Hauser, 1983], had little
effect on the IL-1-induced diacylglycerol produc-
tion (Table II).

Effect of D-609 on IL-1-Induced Secretion
of IL-6 in MC3T3-E1 Cells

To clarify the role of phosphatidylcholine-
specific phospholipase C in the IL-1-induced
secretion of IL-6, we examined the effect of
D-609 on the IL-6 secretion in MC3T3-E1 cells.
D-609, which alone had little effect on IL-6
secretion, significantly enhanced the secretion
of IL-6 induced by IL-1 (Fig. 5). The stimulative
effect of D-609 on the IL-1-induced IL-6 secre-
tion was dose-dependent in the range between
0.1 and 3 ng/ml.

DISCUSSION

In the present study, we showed that IL-1
induced the production of diacylglycerol. So, it

is probable that IL-1 activates PKC in osteo-
blast-like MC3T3-E1 cells. In addition, we dem-
onstrated that staurosporine and calphostin C
enhanced the IL-1-induced secretion of IL-6.
Thus, our findings suggest that the IL-1-in-
duced secretion of IL-6 is inhibited by PKC,
which is activated by IL-1 itself in MC3T3-E1
cells. Furthermore, the stimulative effect of IL-1
on IL-6 secretion was markedly amplified in the
PKC down-regulated cells compared to that in
intact cells. Therefore, it is most likely that
PKC activated by IL-1 limits the overstimula-
tion of IL-6 synthesis in osteoblast-like
MC3T3-E1 cells.

We next investigated the exact mechanism
behind the IL-1-induced activation of PKC. We
first showed that IL-1 had no effect on the
formation of inositol phosphates. On the con-
trary, NaF significantly induced the formation
of inositol phosphates. It is well known that
phosphatidylinositol is hydrolyzed by phospho-

Fig. 2. Dose-dependent effect of IL-1 on IL-6 secretion in
MC3T3-E1 cells. The cultured cells were stimulated by various
doses of IL-1 for 48 h. Values for unstimulated cells have been
subtracted from each data point. Each value represents the

mean 6 SE of triplicate independent cell preparations. Similar
results were obtained with two additional and different cell
preparations. *P , 0.05, compared to the value of control.
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lipase C, resulting in the formation of inositol
phosphates and diacylglycerol and that het-
erotrimeric GTP-binding protein(s) is coupled
to phosphatidylinositol-specific phospholipase
C [Gilman, 1987; Berridge, 1993]. So, it seems
unlikely that IL-1 activates phosphatidylinosi-
tol-specific phospholipase C. Our finding sug-
gests that IL-1 does not activate PKC through
phosphoinositide hydrolysis in osteoblast-like
MC3T3-E1 cells. In addition, we demonstrated
that IL-1 did not affect the formation of choline,

and that propranolol had no effect on the diacyl-
glycerol production induced by IL-1. It is recog-
nized that phospholipase D hydrolyzes phospha-
tidylcholine to yield phosphatidic acid and
choline [Exton, 1990; Billah and Anthes, 1990].
Phosphatidic acid is subsequently degraded into
diacylglycerol by phosphatidic acid phosphohy-
drolase. So, from these findings, it is unlikely
that IL-1 induces phosphatidylcholine hydroly-
sis by phospholipase D in MC3T3-E1 cells.

Phosphatidylcholine is also hydrolyzed by
phospholipase C, resulting in the formation of
diacylglycerol and phosphocholine [Exton, 1990;
Billah and Anthes, 1990]. We showed that IL-1
significantly stimulated the formation of phos-
phocholine. Thus, it seems that IL-1 simulates
not phosphatidylcholine-specific phospholipase
D but phosphatidylcholine-specific phospholi-
pase C. The effect of IL-1 on IL-6 secretion was
more potent than that on the formation of phos-
phocholine. These findings suggest that IL-1
promotes IL-6 synthesis at a lower dose and
modulates the synthesis of IL-6 by IL-1-in-
duced PKC activation at a higher dose. In addi-
tion, we demonstrated that D-609 significantly
suppressed the diacylglycerol production by
IL-1. Therefore, these results suggest that IL-1

Fig. 3. Effect of staurosporine or calphostin C on the IL-1-
induced secretion of IL-6 in MC3T3-E1 cells. The cultured cells
were pretreated with 10 nM staurosporine (A) or various doses
of calphostin C (B) for 20 min, and then stimulated by 30 ng/ml

IL-1 for 48 h. Each value represents the mean 6 SE of triplicate
independent cell preparations. Similar results were obtained
with two additional and different cell preparations. *P , 0.05,
compared to the value of IL-1 alone.

TABLE I. Effect of PKC Down-Regulation on
IL-1-Induced Secretion of IL-6 in

MC3T3-E1 Cells†

TPA-pretreatment
(0.1 µM)

IL-1
(30 ng/ml)

IL-6
(pg/ml)

2 2 ,10
2 1 830 6 55
1 2 ,10
1 1 1,440 6 90*

†The cultured cells were pretreated with 0.1 µM TPA for 24
h, and then stimulated by 30 ng/ml IL-1 for 48 h. Each
value represents the mean 6 SE of triplicate independent
cell preparations. Similar results were obtained with two
additional and different cell preparations.
*P , 0.05, compared to the value of IL-1 alone.
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activates PKC via stimulating phosphatidylcho-
line-specific phospholipase C in osteoblast-like
MC3T3-E1 cells. Furthermore, we found that
D-609 markedly enhanced the IL-1-induced IL-6
secretion. Taking our findings into account as a

whole, it is most likely that IL-1 itself antago-
nizes IL-6 synthesis due to PKC activation
through phosphatidylcholine-hydrolyzing phos-
pholipase C in osteoblast-like MC3T3-E1 cells.
The precise signal transduction pathway medi-
ating IL-6 synthesis by IL-1 remains to be de-
tailed, and is likely to be cell type specific [Gross
et al., 1993; Norris et al., 1994]. However, it has
been reported that PKC-induced phosphoryla-
tion of NFIL-6, a transcriptional factor whose
activation has been implicated in upregulation
of IL-6 promoter activity [Akira et al., 1990b],
inhibits NFIL-6 function at the level of its tran-
scription [Mahoney et al., 1992]. Thus, it is
possible that NFIL-6 phosphorylation by IL-1-
activated PKC is involved in the limitation of
IL-6 synthesis in MC3T3-E1 cells. Further in-
vestigation would be required to clarify the
details.

In conclusion, these results strongly suggest
that IL-1 activates PKC via phosphatidylcho-

Fig. 4. Effect of IL-1 on the formation of phosphocholine in
MC3T3-E1 cells. The labeled cells were stimulated by various
doses of IL-1 for 20 min, and then the formation of phosphocho-
line was determined. Values for unstimulated cells have been

subtracted from each data point. Each value represents the
mean 6 SE of triplicate independent cell preparations. Similar
results were obtained with two additional and different cell
preparations. *P , 0.05, compared to the value of control.

TABLE II. Effect of D-609 or Propranolol on
IL-1-Induced Production of Diacylglycerol in

MC3T3-E1 Cells†

Pretreatment
IL-1

(30 ng/ml)
Diacylglycerol

(pmol/dish)

2 1 1,123 6 127
D-609 1 148 6 23*
Propranolol 1 1,215 6 177

†The cultured cells were pretreated with 30 ng/ml D-609,
300 µM propranolol, or vehicle for 20 min, and then stimu-
lated by 30 ng/ml IL-1 for 20 min. Values for unstimulated
cells have been subtracted from each data point. Each value
represents the mean 6 SE of triplicate independent cell
preparations. Similar results were obtained with two addi-
tional and different cell preparations.
*P , 0.05, compared to the value of IL-1 alone.
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line-specific phospholipase C in osteoblast-like
cells, and the PKC activation then limits IL-6
synthesis induced by IL-1 itself.
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